1,354 research outputs found

    A data augmentation methodology for training machine/deep learning gait recognition algorithms

    Get PDF
    There are several confounding factors that can reduce the accuracy of gait recognition systems. These factors can reduce the distinctiveness, or alter the features used to characterise gait; they include variations in clothing, lighting, pose and environment, such as the walking surface. Full invariance to all confounding factors is challenging in the absence of high-quality labelled training data. We introduce a simulation-based methodology and a subject-specific dataset which can be used for generating synthetic video frames and sequences for data augmentation. With this methodology, we generated a multi-modal dataset. In addition, we supply simulation files that provide the ability to simultaneously sample from several confounding variables. The basis of the data is real motion capture data of subjects walking and running on a treadmill at different speeds. Results from gait recognition experiments suggest that information about the identity of subjects is retained within synthetically generated examples. The dataset and methodology allow studies into fully-invariant identity recognition spanning a far greater number of observation conditions than would otherwise be possible

    The Evidence Behind the Diagnostic Investigation of Canine Idiopathic Epilepsy

    Get PDF
    <p><strong>Clinical bottom line</strong></p><p>There remains until recently an overall lack of clarity for the practical criteria for the diagnosis of canine idiopathic epilepsy. Signalment and an interictal neurological examination are vital for the diagnosis of idiopathic epilepsy. Despite the current insufficient evidence, the emerge of new diagnostic methods, such as cerebrospinal fluid and/or serum biomarkers, advanced functional neuroimaging techniques and electroencephalography, is likely to change the diagnostic approach in canine epilepsy in the near future.</p

    The Evidence Behind the Treatment of Canine Idiopathic Epilepsy

    Get PDF
    Oral phenobarbital and imepitoin in particular, followed by potassium bromide and levetiracetam are likely to be effective for the treatment of canine idiopathic epilepsy. There is strong evidence supporting the use of oral phenobarbital and imepitoin as ‘first line’ medications. However, there remains a lack of evidence for targeted treatment for the various individual epileptic phenotypes and quite limited evidence on direct comparisons of the efficacy between various anti-epileptic drugs

    A Resource Intensive Traffic-Aware Scheme for Cluster-based Energy Conservation in Wireless Devices

    Full text link
    Wireless traffic that is destined for a certain device in a network, can be exploited in order to minimize the availability and delay trade-offs, and mitigate the Energy consumption. The Energy Conservation (EC) mechanism can be node-centric by considering the traversed nodal traffic in order to prolong the network lifetime. This work describes a quantitative traffic-based approach where a clustered Sleep-Proxy mechanism takes place in order to enable each node to sleep according to the time duration of the active traffic that each node expects and experiences. Sleep-proxies within the clusters are created according to pairwise active-time comparison, where each node expects during the active periods, a requested traffic. For resource availability and recovery purposes, the caching mechanism takes place in case where the node for which the traffic is destined is not available. The proposed scheme uses Role-based nodes which are assigned to manipulate the traffic in a cluster, through the time-oriented backward difference traffic evaluation scheme. Simulation study is carried out for the proposed backward estimation scheme and the effectiveness of the end-to-end EC mechanism taking into account a number of metrics and measures for the effects while incrementing the sleep time duration under the proposed framework. Comparative simulation results show that the proposed scheme could be applied to infrastructure-less systems, providing energy-efficient resource exchange with significant minimization in the power consumption of each device.Comment: 6 pages, 8 figures, To appear in the proceedings of IEEE 14th International Conference on High Performance Computing and Communications (HPCC-2012) of the Third International Workshop on Wireless Networks and Multimedia (WNM-2012), 25-27 June 2012, Liverpool, U

    Information Nonanticipative Rate Distortion Function and Its Applications

    Full text link
    This paper investigates applications of nonanticipative Rate Distortion Function (RDF) in a) zero-delay Joint Source-Channel Coding (JSCC) design based on average and excess distortion probability, b) in bounding the Optimal Performance Theoretically Attainable (OPTA) by noncausal and causal codes, and computing the Rate Loss (RL) of zero-delay and causal codes with respect to noncausal codes. These applications are described using two running examples, the Binary Symmetric Markov Source with parameter p, (BSMS(p)) and the multidimensional partially observed Gaussian-Markov source. For the multidimensional Gaussian-Markov source with square error distortion, the solution of the nonanticipative RDF is derived, its operational meaning using JSCC design via a noisy coding theorem is shown by providing the optimal encoding-decoding scheme over a vector Gaussian channel, and the RL of causal and zero-delay codes with respect to noncausal codes is computed. For the BSMS(p) with Hamming distortion, the solution of the nonanticipative RDF is derived, the RL of causal codes with respect to noncausal codes is computed, and an uncoded noisy coding theorem based on excess distortion probability is shown. The information nonanticipative RDF is shown to be equivalent to the nonanticipatory epsilon-entropy, which corresponds to the classical RDF with an additional causality or nonanticipative condition imposed on the optimal reproduction conditional distribution.Comment: 34 pages, 12 figures, part of this paper was accepted for publication in IEEE International Symposium on Information Theory (ISIT), 2014 and in book Coordination Control of Distributed Systems of series Lecture Notes in Control and Information Sciences, 201

    Guidance and Control strategies for aerospace vehicles

    Get PDF
    A neighboring optimal guidance scheme was devised for a nonlinear dynamic system with stochastic inputs and perfect measurements as applicable to fuel optimal control of an aeroassisted orbital transfer vehicle. For the deterministic nonlinear dynamic system describing the atmospheric maneuver, a nominal trajectory was determined. Then, a neighboring, optimal guidance scheme was obtained for open loop and closed loop control configurations. Taking modelling uncertainties into account, a linear, stochastic, neighboring optimal guidance scheme was devised. Finally, the optimal trajectory was approximated as the sum of the deterministic nominal trajectory and the stochastic neighboring optimal solution. Numerical results are presented for a typical vehicle. A fuel-optimal control problem in aeroassisted noncoplanar orbital transfer is also addressed. The equations of motion for the atmospheric maneuver are nonlinear and the optimal (nominal) trajectory and control are obtained. In order to follow the nominal trajectory under actual conditions, a neighboring optimum guidance scheme is designed using linear quadratic regulator theory for onboard real-time implementation. One of the state variables is used as the independent variable in reference to the time. The weighting matrices in the performance index are chosen by a combination of a heuristic method and an optimal modal approach. The necessary feedback control law is obtained in order to minimize the deviations from the nominal conditions

    Assessing the performance of symmetric and assymetric implied volatility functions

    Get PDF
    This study examines several alternative symmetric and asymmetric model specifications of regression-based deterministic volatility models to identify the one that best characterizes the implied volatility functions of S&P 500 Index options in the period 1996–2009. We find that estimating the models with nonlinear least squares, instead of ordinary least squares, always results in lower pricing errors in both in- and out-of-sample comparisons. In-sample, asymmetric models of the moneyness ratio estimated separately on calls and puts provide the overall best performance. However, separating calls from puts violates the put-call-parity and leads to severe model mis-specification problems. Out-of-sample, symmetric models that use the logarithmic transformation of the strike price are the overall best ones. The lowest out-of-sample pricing errors are observed when implied volatility models are estimated consistently to the put-call-parity using the joint data set of out-of-the-money options. The out-of-sample pricing performance of the overall best model is shown to be resilient to extreme market conditions and compares quite favorably with continuous-time option pricing models that admit stochastic volatility and random jump risk factors
    corecore